人生倒计时
- 今日已经过去小时
- 这周已经过去天
- 本月已经过去天
- 今年已经过去个月
导数的几何意义
导数的几何意义:对于可导函数,利用割线无限逼近切线,而割线斜率的极线即为切线的斜率,公式为:函数y=f(x)在x=x0处的导数f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。导数是微积分中的重要基础概念。
导数第一定义
设函数y=f(x)在点x0的某个邻域内有定义当自变量x在x0处有增量△x(x0+△x也在该邻域内)时相应地函数取得增量
△y=f(x0+△x)-f(x0)如果△y与△x之比当△x→0时极限存在则称函数y=f(x)在点x0
处可导并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义。
导数第二定义
设函数y=f(x)在点x0的某个邻域内有定义当自变量x在x0处有变化△x(x-x0也在该邻域内)时相应地函数变化
△y=f(x)-f(x0)如果△y与△x之比当△x→0时极限存在则称函数y=f(x)在点x0处可导并称这个极限值为函数y=
f(x)在点x0处的导数记为f'(x0),即导数第二定义。
导函数与导数
如果函数y=f(x)在开区间I内每一点都可导就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x
值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数y=f(x)的导函数记作y'、f'(x)、dy/dx、
df(x)/dx,导函数简称导数。
导数的几何意义是什么?
导数的几何意义如下:
函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0]点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。导数的应用导数与物理几何代数关系密切。在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。
性质:
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
导数的几何意义是什么
导数的几何意义函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0]点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。导数的应用导数与物理几何代数关系密切。在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。
导数的几何意义是什么
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。