首页 生活指南 正文内容

完整的三角函数值表(完整的三角函数值表0到360)

阿立指南 生活指南 2022-08-14 12:08:09 271 0

常见三角函数值表是什么?

三角函数表如下:

三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

扩展资料:

sin0=sin0°=0

cos0=cos0°=1

tan0=tan0°=0sin15=0.650;

sin15°=0.259

cos15=-0.759;cos15°=0.966

tan15=-0.855;tan15°=0.268

sin30°=1/2

cos30°=0.866;

tan30°=0.577;

sin45°=0.707;

cos45°=0.707

tan45=1.620;tan45°=1

sin60=-0.305;sin60°=0.866

cos60=-0.952;cos60°=1/2

参考资料来源:百度百科-三角函数值

完整的三角函数值表(完整的三角函数值表0到360) 第1张

高中完整的三角函数值有哪些?

完整的三角函数值如下:

三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

三角函数的由来:

sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的领导人物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。

cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现。

secant(正割)及tangent(正切)为丹麦数学家托马斯·芬克首创,最早见于他的《圆几何学》一书中。

cosecant(余割)一词为锐梯卡斯所创。最早见于他1596年出版的《宫廷乐章》一书。1626年,阿贝尔特·格洛德最早推出简写的三角符号:“sin”、“tan”、“sec”。

1675年,英国人奥屈特最早推出余下的简写三角符号:“cos”、“cot”、“csc”。但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来。

1949年至今,由于受前苏联教材的影响,我国数学书籍中“cot”改为“ctg”;“tan”改为“tg”,其余四个符号均未变。这就是为什么我国市场上流行的进口函数计算器上有“tan”而无“tg”按键的缘故。

以上内容参考 百度百科-三角函数

完整初中三角函数值表

完整初中三角函数值表如下图所示:

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

扩展资料:

起源

公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。

三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。

我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。

印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。

30度,45度,60度的三角函数值是多少嘞?

30度、45度、60度的正弦、余弦、正切值是:

正弦值:30度是二分之一;45度是二分之根号二 ;60度是二分之根号三 。

余弦值:30度是二分之根号三 ;45度是二分之根号二 ;60度是二分之一 。

正切值:30度是三分之根号三 ;45度是一 ;60度是根号三 。

扩展资料:

应用

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

它有六种基本函数

函数名正弦余弦正切余切正割余割

符号 sin cos tan cot sec csc

正弦函数sin(A)=a/c

余弦函数cos(A)=b/c

正切函数tan(A)=a/b

余切函数cot(A)=b/a

其中a为对边,b为邻边,c为斜边

欢迎 发表评论:

文章目录
    搜索
    111